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1. INTRODUCTION

1.1 Group Inference and Representation by Random Examples

In informal mathematical discourse, we often make use of examples to
illustrate general principles; and in many cases this suffices to convey
the essential ideas. For instance, Euclid never formally state? his algorithm
for computing GCD but instead explained it by a series of example computations.
Cn the other hand, a student may illustrate comprehension of a general
principle, say Euclid's algorithm, by producing some examiles.

The rields of Inductive Inference and Combinatorial Enumeration concern
the dual problems of inference of a combinatorial structure from examgles,
and generation of sarrle examples of a given combinatorial structure,
respectively. In Section 2, we investigate these problems when the combina-
torial structure of interest is a finite group, and the samples are random,
with inderendent uniform distribution. We give upper kounds on the number
of random elements of G required to generate a fixed group (generally, the
required number of random samples is a logarithm of the group's order).
As an interesting example, consider the group of all permutations of the
RUBIC's cube. Our results imply this group can be generated (with high
likelihood) by a very small number of random permutations. Furthermore, the
results allow us to verify (within high likelihood) the correctness of a
"solution method" to RUBIC's cube by applying the "solution method" on a small

nunber random example permutations of RURIC's cube.

.




1.2 Group Theoretic Problems

The fundamental groups problems which will concern us are:

(1) Group Merbersnip: given an input element x, and a group G,

test x€G.

(2)  Growr Inclaeton: given grougs G, H, test G < H.

(3) Greur Ezuality: given groups G, H test G=H.

In these problems, a group is normally assumed to be finitely presented.

We further assume that a group is randomly presented in the sense defined
below.
Let a ranuor gonerator st oFf ¢isc k  for group G be a set of k

rardon, irdependently chesen elements gl,...,g of G, with the condition

that G.,...,G. ererate G. We say <g.,...,q,> 1s a »@acr rre8crsiIili
71 K 7 1 - £

B ricizbilictie alrorithr A for a group problem takes as input a
random generatcr scts cf given groups. The cxypectel time coryiexity of
A is the average time of A over random generator sets, given worse case
grougs.

Section 2.4 describes a probabilistic algorithm for constructing a
strong generatcr sequence for a randomly presented group. The first use of
such probabilistic constructions (in a considerably less general context
was due to [Babkai, 79].

We also discuss in Sections 2.5 and 2.6 known algorithms for group
mermbership testing, group inclusion, group equality, and random element

generation which require strong generator sequences.
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1.3 Probabilistic Algorithms for Permutation Groups

The real motivation of our work, and our strongest results, are efficient
rrobabilistic algorithms for the permutation group problems: membership,
inclusion, and equality.

[Sim, 78] first gave a well known decision algorithm for these permutation

group problems using a construction known as the Sim's Table; others have found
1t to be very efficient in practice. However, in the worse case, Sim's
algorithms were exponential time. [Furst, Hopcroft, and Luke, 81] later
modified Sim's algeorithm to yield o(n6) worse case time bounds for these
croblems. Still further work by [Jerrum, 82) reduced these worse case time
ocunds to O(ns). These worse case time bounds seem to be much larger than
would be acceptable in practical applications. This situation motivated us

to investigate the expected time complexity of permutation group problems.

. 3 . . . Cys s
Our main results are C(n log n) expected sequential time probabilistic

algorithms for permutation group membership, inclusion, and equality. Our
. . N 3 . s s o1 -

time bounds OC(n~ log n) ars conly excreded with vrcktakility «n for scme

constant « 1 that can be set arbitrarily large. In comparison, the pre-

viously sighted algorithms for these permutation grour problems have exrected
time complexity which 1s the same as their worse case complexity . (n
(Note: Our results here are near optimal in the sense that we can show that

2.
n 49, would imply

further decrease in our sequential time bounds below, say
improvement in the sequential time bounds of best known algorithms for solving

a linear system of size n/2xn/2 over GF(2}, which is a special case of

permutation 2-group membership testing.) e
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1.4 Parallel Algorithms in Group Theory

A a  haoaa PRI,

We also investigate the use of parallelism for group theoretic problems.
Our goal is efficient parallel algorithms requiring polylog time, polynomial . ]
’ N
number of rrocessors. In Section 4 we give efficient parallel algorithms C]
A
for the orbits and block systems of permutation groups. A 2-group is a per- 3
<
. . . <
mutation group whose elements are all of order of a power of 2; they arisc E
naturally since a 2-crour 1s a subgroup of automorphisms of binary trees and )
4
furthermcre the autcrorghism grour: of any trivalent graph with a fixed
vertex is a 2-grour, sc¢ [Luks, 81). We give in Section 5 efficient parallel 4
algorithms for the preoblems of membershir, inclusior and eguality for 2-groursz.
A
Our rarallel 2-group membershiy algerithm makes interestinz use of cur pro-

babilistic technigues: 1t takes as inrut a random generator set cf a civin
2-grouyp, and constructs from them a tow.r ~f Cilos 10 sdarcu

roscsikle tc do efficient parallel mermbership

&2
+
M
i
+
"

The parallel complexity of the permutation group merbersiiiy problen
rerains open; it is neither known to be log-space complete, for deterministic
rclynorial time, nor is there a known rolylog depth algorithr for arcup rmermber-

ship. FPRecently [McKerzie and Cook, 83] have given a polylog time parallel

algorithm for Abelian permutation group membership. Their results, and our 4
probabilistic parallel algorithm for 2-grour menbership, are the only 1

positive results in this regard.
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2. PROBABILISTIC ALGORITHMS FOR FINITE GROUPS

2.1 Preliminary Definitions

Let G be group specified by presenting a finite list of gencrators, as G

<ql,...,qk:>. We often assume G has a [inite tower of subgroups

GJZDGl:)... DGh where GO==G and Gh:=I contains only the identity element.

The tower has 2€i;"t h. For each i=1,...,h let Ei be an equivalence

relation such that Vx,y € Gi- X Eiy iff y—lx€<%f The blocks of each

l’

1. are the colilection of 20s¢ts of G, 1in G denoted by the quotent

i i i-1'
3. ,/G.. Let R, be a corpietz get o coser representations for G, /G,
i=1" 1 1 : - 1-1" 71

is, a set contalning exactly one element from each coset of Gi /Gi' Since

G=(G /Gl)(Gl/G“}"'(G /G.), the sequence of sets R
P4

. .e.,R 1s called -
h=-1""1n 17" ""h

CTrONT S thwisl o Fuviratore for the grour G, with respect to this sub e

2.2 Elementary Properties of RAND(G)

We will let RAUD(3) Jdenote the uniformly distributed random variable

aiving random elements of G (with egqual prokability). If X%, are randon

variables, let Xy %xz if they have the same probability distribution function.

LEMMA 2.1. 7 G ¢ 2 gronr and x €5, adr RAND(G) ®x+RAND(S) .
'or proof, observe that the function fx(y\ =xsy is 1-1.

LEMMA 2.2, o: G' o q ellirowr of aro G0 i ot RO roeommloroooos

-~

. . . 1
0 eolet roppesomtatires Tor G/G', il RAND(G) MRAND(R) TCRAND(G').

Proof. By Lagrange's Theorem, each coset of G/G' has the same size, so

RAND(G) has equal probability of being in any aiven coset of G/G', say A.

L -1 , . .
By definition RAND(R) also has this property. EBut jroducting an elermeont of A

-1

clement of G' keeys us in the same cosct A. Honoo  FAND(F) TRAND(G')  has e same
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robakility of being in A as does RAND(G). By definition, KAND(G) has a

P )

1iform distribution within each coset A, Let XA be the unique element of

. -1~ . . 1 '
in such that A=x_ 3'. Then since JA; =G’ ] , we must have
Fa%

-1 -1 . -
ANDU(A) =X, RAND(G'). Hence we conclude that RARD(R) +RAND(G') is also ,'

A
1iformiv distributed within each coset of G/G'. a i
.3 Groun Inference from Random Examples )
Let G be & fixed finite Ggroup. Let L= {>:1,x,),...' be an infinite
1st of elerments chosen inderendently from  RAND(G). |
4
HEOREM 2.1, or G < w1, Prob(C= <X_ ,.ie.,x 221 -: 7
1 m -
1/log
> 1o S o+ {In{log CiVlon(l/: ), wior v, =1-(1-¢9) Log G.
1 1
. - — = ] o] . . S . . R 3 T o LS -
roof. Lot 2= €-1,7,... .\jG\.\l,...,.\j_l/\ . List J= ]j reeealog
-1
n increazing order. With probkability 1, this gives a tower of subzrours
=3 DG, 2...2C _ S5 ., =1 where G- _ = <x. ,...,%X. 2. By Lagranzc's
z 1 T -1 3 J ~s 3 3 ’ i )
- 1 S
Car ” €z . 2< 5 /07 and J €log G'. Hence
S S-~1 ’
~i 1y & 5 ~ Ty ; ; < /”S >
rol (i 3 + 1) <10l and so frol{i_ >3] +.) 81, for 2 1.
s s-1 s s~=1
S R S{ie'lo:{i s ) with propabilitv 2 1-._. Fut then with
s e-1 : 1 : 1
J
robabilit {1 ~:) Z1-. we have G= <X_,.e.,x > if

A
-
+
o
=]
[
o]
{3
—~
[
™~

S los 5 4 (In(log {G)) log(l/- ) sirv: |3 € los |6 . o S
-1

PP RO
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POLYLOG PARALLEL TIME ALGORITHMS FOR 2-GROUPS

A finite groupr G 1s a 2-group if every element has order a power of

We will show that any 2-group has a certain tower of h= .log n; subgroups

(0 o (g o

I. Given generators for each subgroup in such a

0(1)

S 3 . .
'r, we can test mombershilip in O(log n) time using n processors.
chermore, 1f G 1s given by random presentation, we show that we can

o)

. . 3 . .
struct such a tower in 0Of{(log n) time using n Processors.

Parallel Computation of a Structure Forest

nny Z-azrcu; G can be decomposed into a subgroupr of natural direct

zth rroducts. Thus there is a gfraoturs “oroc? Fo

traes sush that G 1s a sukgrour of the natural direct

dacw of tihh austomornhilsm grours of the trees of FG. In particular, each

and its set of leaves is an orbit of

'
¢l
~
ot
"
T
O
Ve
b
o

ST be any tree or subtree of FG which is not a leaf.

= pe tin osct of leaves of ST and let Bl' 82 be the sets of leaves
the tw: immodlate subtrees of  ST. Then we reguire that {Bl,Eﬁ} be a

lock syster in b,
Suprose we are Jiven generators gl,...,gk of 2~aroup G Esn. By
cuting first the G-orbit algorithm, and then executing in parallel for
a,b€ 1,...,n’ the G-block algorithm of Section 4.2, the structure

est F . can be constructed immediately in O(log n) further time by
2

minaticn of each G-block.

MA 5.1, T ctrucsan foropt Foof DezponLr G Cs an be econcrrucTil T
- G - * - - n
. . 0(1)
rot eas. )ttt 0(log n) wsinr o oon rroscssors.

. .‘..Q'-‘ ! - re PRI SV, T S L . — A A-‘ - - y -t y .‘. o .' i - . u M " y b s "v . . . " .J
o i aboamtbiadonstedeai et i P acnlaiia A e e Ak a At A A A aala
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THEOREM L.2. 4 Jirm's ITable san be conctructeod rom a randor presentation o!

1 oo perrmitarion grouwp In 5, in carected time 0O(n log n) wsing n
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Suppose G is presented as <gl,...,gk>. For distinct a, b€{l,...,n!,

't us construct the undirected graph with vertex set {1.....n}) ana edge

t £, ={{a,b}}V {{gi(a),gi(b)}lléi <k}.

MMA 4.2, [Atkinson, 75] The connceted component of ({1,...,n},Ea b
1

mraining a 1is the emallecer G=Llock containing la,bl.
Hence finding G-blocks can be efficiently reduced to undirected graph

nnectivity, which can apply Lemma 4.1 to get

IMMA L3, The G-kicoke ean be computed (in the worst cace) in time O(log n)
. 3
e nok rroocecore.

emark., If G 1is given by random presentation, G-blocks can be found in

xpected time Of(log n) using n” logn processors.,

.3 Limited Parallelism for General Permutation Group Problems

The group membership algorithm of [Sims, 78] was improved by [Furst,
opcroft, and Luks, 80] to be polynomial time. However, it appears to be
nherently a sequential algorithm; and can not apparently be speeded up to
olylog time by parallelization. We do not get much better if we attempt to
irectly parallelize our probabilistic algorithms for general permutation
roups. (But our low processor bounds may make our parallel algorithms

ore practical.) We first observe:
EMMA L. b4, Given a Sime Talle for a permutation group in S s WE can exeoate
membersiip tect: x€G? In tim: O(n) uSINg N pPoo0se PO,

Applying Theorem 4.1 to our algorithn of Section 3.3 for Sim's

able construction, we get:

R A A L S S . S L e T RPN A

bdad 2
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L, PARALLEL ALGORITHMS FOR PERMUTATION GROUPS
’
4,1 The Parallel Machine Model: Known Results
We will assume the concurrent read, concurrent write parallel RAM
described in [Shiloach and Viskin, 82]. R
LEMMA 4,1 [Shiloach and Viskin, 82] and [Viskin and Tarjan, 84]. Given an
eidlrezted graph of n vertices and m  edaes, the cornected components,
a cranning forest, and a preorder of each tree im the forest can all be ’
comruved in time 0O{log n) and n+m rrocessors,
4,2 pParallel Computation of Orbits and Blocks of Permutation Groups )
Let G<sn be permutation group over {1,...,n}. It follows immediately
from proposition 3.1, Corollary 3.1, and Lemma 4.1 that
THEOREM 4,1, e can compute the orbits of G= <g1""”ﬁ<> in time 0O(log n) ’
wofwgy O the worst case 0O(nk) rrocessors.  Furthermore, if G 1s given by
roiicm rregencation, we oan eovrute the G-orbits in time O(log n) uaing
n log n processors, witn likelihood 1 -7 for any sufficiently larae )
st ]
G acts transitively on its orbits. G 1is traneitive if G has only ,
one orbit. Suppose G 1is transitive. A nonempty set Bi{l,...,n} is a
G~poo2¥ if W-,r' €H, ~(B)=n'(B) or u(B)Na'(B)=@P. 1If so, then :
{~(B)|- €G} is a G-block systerm, and group G acts transitively on each ) "~
of the blocks of the system. If there are no G-blocks of size at least two, 1
then G acts primitively. A G-block system is minimal if G acts -
primitively on each block. X
b
]
’ 4
)
R N N T N R R I i T A SR S AT
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S

COROLLARY 3.2. Fer (worse case) perrutation groups in S, given by randor

presevtatior, permutation group rerbership, inclusion and equality can all

3

be dove in exrected time O{n~ log n). Furthermore, these bounds hold witn
xr

Oy - - R N I B | o .
probability 1l-n or oy crelon ly Tarec eomer it ao 1
~
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We can easily compute a spanning tree Ti and its preorder in sequential

time O(n log n) by depth first search. It is easily to verify that for

each j€VvV,, r, . 1is an element of G, such that r, .(i)=3j. Hence
i i,J i-1 i,3
= JJEv, ) i let t of i . .
Ri {ri,JlJ J} is a complete set of coset representatives for Gl-l/Gl'
as required. Furthermore Li = {rzfﬂ(i)'ﬂlﬂE Li—l- Fi-l} is a list of

(n-i-1) (a+1)c log n elements of RAND(Gi_l). Thus Pl,---,Rn are a Sim's

. -Q
Table with probability 21-n .
The most costly step of each iteration is [10], which takes time

2 ) . . , . 3
C(n log n). Since there are n iterations, the total time is O(n  log n).O0

3.4 Solution of Permutation Group Problems Utilizing the Sim's Table

The three lemmas below follow irmediately from the discussion in

Section 2. 7.

LEMMA 3.2. Given the Jim's Tuble o a rerrutation zreir G C S, md an
’ v - b - 2

hrut x€s , Sumlsg reriersinir tesd X€ G? tzres cecucntial tire C(nT)

LEMMA 3.3. toen permutation roup Gl = <gl,. =N > anad the Sir's

Table For permuration group G, where Gy» G, S8, then the growp

irclusior test: G, € G,? takes sequential tire Ol(nk

Proof. It suffices to test gi€ G2 for i=1,...,k,. o

Lemma 3.b4. Civen permutation groups G, = <9ysev-s9y 7 and
1
..h > in s, and their Sim's Tables, tiien we can test growp

%2

equality: G; = G,? in sequential time Oln(k,+k ).

= < ..
G2 hl,

As an immediate consequence of the above Lemmas 3.2-3.4, Theorem 2.1,

and Corollary 3.1, we have:

R - D T T S N T TR UL S
- CUPRT IR -

B B IO i P ca e e T LT Lt (e, .t et . R et A OIS - .
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begin

Let Lo be a list of m' random elements independently drawn from RANDI(G)

for i=1,...,n do

begin

(1] Let Fi—l be the set consisting of the first (a+l)c log n

elements of L.
i-1

[2] Compute the connected components of the graph
N 1o
(-1,...,n}, voer. Eﬂ).
i-1

[3] Let Vi be the connected component containing 1.

[4] Comprute a spanning tree Ti of component Vi rooted at 1.

[5] label each edge et Ti with a permutation £(e) = 7 where 7€ Fi—l
ané such that e€ E_ .
[6] Let ri,i be the identity permutation
[7) In a preorder traversal of tree Ti' compute for each j€ Yi— {i}
the permutation ri,j = ri'j.'i(j',j) where 3' 1is the
rarent of j.
[8] Ri*'{ri'j]je Vi}.
[9] Li +g.
[10) for each TmE Li—l— Fi—l do
add r-l . T to L
a,T (1) i
end
return the Sim's Table Rl" ,Rn.
For proof of this algorithm, let us assume inductively for some 1>1
that 11_1 is a list of (n-i)(a+l)c log n elements of RAND(Gi-l)' By
Theorem 3.1, Vi is the Gi-orbit containing i, with probability 2 1- n_a.

LPIPU TV S WY Y

.
» A
RPN
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Let G* = (---(G_)_ ...) . T(G*) 1is just the number of connected
o m
1 2 ac log n
components of graph {1,...,n), ETT U.ooo v ETT )} which are proper
1 ac log n

subsets of orbits of G.

Iemma 3.1 implies for any sufficiently large constant a above ¢,
that Prob(T(G*) =0) 2 1 - ja , which proves our Theorem 3.1. a
n

3.3 Constructing a Sim's Table in O(n3 log n) Expected Sequential Time

Fix a permutation group G €S over points {1,...,n}. For i=1,...,n,
let Gi be the subgroup of G fixing points 1,...,i. The resulting tower
G =Gy2G 2...2G =1 has height h =n and is called the point stabilizin:
tcwer of G. A strong sequence of generators Rl,....Rn for this point
stabilizing tower is called a Sim’s Tzble.

Unfortunately, it is very expensive to construct the Sim's Table by
known techniques. [Furst, Hopcroft and Luks, 80] give the first polynomial

. . . . . . 6 . .
time algorithm, running in sequential time O(n’). [Jerrum, 82] improved

this time to the best known worse-~case bound of O(ns).

THECREM 3.2. Given a randorm presentation of a given (wWorsc case) permitation

Jroup G S s, we can construct a Sir's Table in expected sequential tire

3 s .- w eas - o yae
O(n~ log n). Further, trese bounds hold with probedility 21-n , for a g7

slently earze constont a> 1 witen ean Do gor arilteari . Tarce,
Proof. We will fix m' = (a+l)cn log n, where c¢>lis a sufficiently large

constant and a2Zc is an arbitrarily large constant.

D P AR R .- LAV S T
NI PO ~ . EAE AT S S L P S

P T NI SR I S N Jhor S [ . -t IR . SRS ) .
< ) PPN S¥ VR PRI C TP AL S S IR T il R T N S G T

bt —d g’ a2

Adedd 8 2




D S S Tl S e B Sl San bas et oo Sne s an on B oo o

-13- - -

algorithm of [Hopcroft and Tarjan,73].

COROLLARY 3.1. ke ean corpute the G-orbits frcw O(logn) ecemente o RINL(G) in

. . L eas -G .
time, with error probarility <n for any suffi-

S
) N .
LS Y

O(n log n) sequentia

ciently larze consrant o> 1.

Now we prove Theorem 3.1. Fix a permutation TTIEG. Let B_ l""'B”‘ K
o i ’

1 1
be the orbits of the group <Tl>. For each 7€ G, let @_ (7)) be the per- _
I\l |
J
mutation T‘ESk such that Vi=1,...,k, %'(3) = 3' iff 3i s.t. T.’(i)€ET . !
1 )
and i€B~T g Thus (D.Tl(”:') is derived from T Dby collarsing each orbit :
Il' 1
of TTl to a single point. Let GTl = {go.ﬁl (T} ' ME€G}. Let T(G) be the size of 1
- v N "
the set 1 7 (1) # 1 Zor some TEG. -
LEMMA 3.1, 17 T €REND(G), then prob(1(6. ) < T(6)/2) >3
1
Proof. Suppose not, then e
[{(n,i) €6, 7(i) # il}| <% [G!7(G)
By the pidgeon hole principle, Bio such that ﬂo(io) # io for some g
TTO€G but
G _—
ki ! = i } 'L—‘J' . b
I{IEG’T(IO) 10.! >3 »

But this implies that the proper subgroup {re G}ﬂ(io) = io_‘- of G has order

greater than lGI/Z, a contradiction with lLagrange’s Theorem.
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3. PROBABILISTIC ALGORITHMS FOR PERMUTATION GRCUPS

Our main results concern permutation group problems. Let Sn denote

the group of all permutations over n points.

3.1 Inference of a Permutation Group from Random Examples

Theorem 2.1 implies that for a fixed permutation group G C Sn’
2
log(n!) +0(leg n)  €n log n-n log e +0(log n)2 independently chosen
permutations from RAND (G) suffice to generate G with probability at

-u
least 1l-n for any sufficiently large constant a >1.

3.2 Computing Orbits in Expected Sequential Time 0(n log n)

Let G < Sn be a permutation group over {1,...,n}. The G-orkit of
i€ {1,...,n} is {w(i) m€G}. Note that the G-orbits rartition <1,...,n’. Let
E_= {(i,j)' n(i) =3 or T(3) = il.

It is obvious that if G = <gl,...,gk> then

PROPOSITION 3.1. The G-orbits are the conmected corponents o

({ll'_"ln}l 'v‘ E ).
we will show:

THEOREM 3.1. Fer cll o cbove a eonstant ¢>0, 2f d = ac logn ani i°

Ty e M€ RAND(G), “novt olor prchubiidty at leact 1- 45, tne G-orilie aee
n
connected corponents of the zraph ({1,...,n}, E_ U...UE_ ).

i T
1 d

‘
4

.

¢
¢
&
€

We can compute the connected components of a graph of n vertices and

cn log n edges in sequential time O(n log n) wusing the depth first search

PPy

-

e
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2.6 Random Element Generation from a Strong Sequence of Generators

Again suppose we have a strong sequence of Generators Rl""'Rh

for group G with respect to its subgroup tower G=G > G.2 ...2 G =1,

e o "1 h
Qi We can compute RAND(G) by a simple algorithm described in [Hoffman, 82]
begin
for i=1l,...,h let xi be a random element of Pi
return x,...X
—_— 1 ™
o =nd
To justify this algorithm, observe that Lemma 2,2 implies:
{ c . -1 -1
f LEMMA 2.5, RAND(G) & RAND(R,) * ...-RAND(R;) .
o

Remark. It is interesting to okserve that a random element of G can be

generated by this method in parallel by a binary product tree of depth 0O(log
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Hence we have total failure probability at most hw(l -~ l/w)m-hwéc. If there
is no failure, then each Ri is a complete set of coset representatives for
Gi—l/Gi' Hence Rl,...,Rh are the strong generators for this subgroup

tower, o

2.5 Group Membership Inclusion, and Equality from Strong Generators

Let G=G,>2G, >5...5G_=1I be a subgroup tower. Let R

0 1 h .+R be a

17" h

strong sequence of generators of G computed in the previous subsections,
We also assume that for any i and x€G, we can effectively find the
i-1
. - . -1

coset representive yERi such that x Y (ie, so vy x€Gi).

We now describe Sim's algorithm for membership, in the general context
of finite groups.

Given an input x and such a strong seqguence of generators, the Sim's

membership algorithm is:

for i=1¢toh do

if ByERi s.t. x :i Y then x«—y_lx
else return ("x 1is not a member of G")
return ("x 1is a member of G")

Remark, Sim's membership algorithm seems inherently sequential, since the
parallel time for its execution is at least ((h), where h is the height

of the subgroup tower.

Also observe that given another finitely presented group G' = <gl,...,gk, >
and a strong generator sequence for G, we can test group inclusion G'€G by
by simply testing gi €G for i=1l,...,k'- Furthermore, given strong generator
sequences for finitely presented groups G-= <hl,...,hk> and
G' = <g1,...,gk' >, we can test G=G' by varifying hiEG' for each

i=1,...,k and ngG for each j=1,...,k'.




P S es " e —
E
.
begin
4 Let LO be a list of m elements indercendently drawn from RANDI(C).
for i=1,...,h do
begin
- R, < &
i
for each A € G, G. do
{ o 1—1/ 1 —
t begin
Let L. be the list of elements of L, in A
* i,A i-1
§ . .
if L. is not empty th
{ if i,A npty an
beain
choose and delete a random element r, frem Li .
s
add rA to Ri
for each remaininc element xc Li . doc
X2 -
-1
acd r, x to L,
¢ 1
end
end
end
return strong sccuence of generators Rl""’ﬁ1
end
THEOREM 2.2. If m2hw+ (log £€)/log (hw(l =1/w)) thewn the algoriinm outruse
@ etrov oo ow Taoucratore of G with error probalbility S el
Proof. We inductively assume that on the i-th iteration, we have had no
failure and Li-l is a set of at least m- (i -1)w elements independently
chosen from RAND(Gi_l). Then Lemma 2.4 implies each element of Li is
independently distributed as RAND(Gi), and clearly lL&\ <|Li_1l +wsm-iw,
s . . . m=hw
By Lemma 2.3, the probability of failure at stage i is at most w(l-1/w) .

O a® o atat - s e 2T e e e s e e e o' P ot et P . L N @t - . et - [ .
PRI, Al ottt ltlmtmnthrthiminssiginsaiosathaiosmimnis el ababanis BASRIE v S S
1 " A_LH PR S S Y R ey
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2.4 Constructing Strong Generators of a Group from Random Examples

Let G be a finite group with subgroup G'SG. We now wish to discover
a complete set of coset representatives of G/G'. BAgain let L be a random
list of m=|L| elements chosen from independent craws from RANDI(G).
Le;t E be the event that L contains at least one representative of each

coset in G/G'.

LEMMA 2.3. If G/c' ras w cosets, then Prob(E) 21 -w(l - 1/w)".

Proof. Consider a given coset, say A, of G/G'. Since a random element
of G has equal likelihood to be any coset of G/G',

Frob(LAA =:) = (1 - l/w)m. Hence Prob(not E) €w Prob(LAA=1:) Sw(l - l/w)m. a

Let us assume event E. For each coset A€G/G', fix r, to be a random

element of LAA, and let R={r,\ 'A€G/G'}. TFor each x€G, let fR(X) =rAlx

where x €A,

LEMMA 2.4, £ (RAND(G)) =~ RAND(G').
R

Proof. Clearly fR(x)EG' for each x€G. By definition, fR(RAND(G)) has

a distribution function identical to rA (RAND (A)) for randomly chosen

AE€G/G'. Also since r;lA=G' for each A €G/G', we have

-l -
rA (RAND (A) ) ®RAND(G'). Hence fR(RAND (G)) %rAl RAND (A) ®RAND (G') . o
We now assume group G has subgroup tower G= GOD GlD eee 2 Gh =1 of
height h and width w=max Gi_l,/Gij. The following procedure constructs a

1
list of strong generators for G with resvect to this subgroup tower.

P R P A e '_._.'_._._'.'..‘_,"_.'_.' P T P T A T ST, D S N - e
dEI PN R Vol PR AP AP AT VAP WL ISP SR Tl 5. U NP W,J Vol VLA SR Sk ik Sl Sl FS S Y -'.)'L‘ b S, L. R T I UL L L R T U, . U, W
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IR 3¢

The structure forest FG aids us in designing an efficient parallel

algorithm for 2-group membership testing,

=

5.2 Root Actions are Linear

We wish to reduce 2-group membership testing to solving lincar < ver
GF(2)[x]. We will fix throughout Sections 5.2 and 5.3 the 2-

Let al,...,ar be the roots of structure forest F let . oazt

G’

on root a, if a; is not a leaf and m permutates the two children of a;
. e T
and otherwise ™ gtgbliciizes a . For any =~ ESn, let A(") =(Al(‘),...,Ar(‘))

where Aj(ﬂ) =1 if +w acts on the root aj and otherwise let Aj(ﬁ) =0,

It is easy to verify:

PROPOSITION 5.]. \ A4 T esn, A(Trl-:'

1’72 )=A(7T2‘7’ ).

2 1

Proof. A(~ -".2> =A(vl) +A(n2) =A(v2) +A(‘Tl) =A(72'*’ ). o

1 1

Thus the permutations act commutitively on the roots of the structure
forest,
To avoid repeated use of the transpose symbol, we will simply let
X E{O,l}k denote a column vector of booleans. Let M be the r ¥k boolean matrix

such that Vi.l<i <Xk, the i-th column of M is A(g.). Let A(G) =-A{-) ~€G:.
LEMMA 5.2. A(G) g the linear spacz {Mx|x € (0,1}

Proof. Suppose ©€G, Let ™ =gj e gj be a factorization of -~ to a
1 S
product of its generators. For i=1,...,k, let xi be the residue mod two

of !{t]jt =i}| (ie, X =0 1if g, occurs an even number of times in this

factorization of =7, and xi =1 otherwise). Then by Proposition 5.1,
X X

A(™) =A(g1l ere gkk). But the j-th element of A(~) 1is the mod two
sum z X, where the sum is taken over just those i such that 9; acts
on aj. Hence by definition, Mx =A(7). o




T
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Let G(l) be the subgroup of G consisting of the permutations that fix
the roots al,...,ar, ie, G(l)= hrEG[A(n): uL...,O)T}.
x x
LEMMA 5.3. n€G iff 3x€1{0,1)" s.t. Mx=a(1) and @ oer 99 trect
X X X b
Proof. If Mx=A(s) and (gll cee gkk) ln EG(l) then since gll . oo gkk'EG,
we have = €G. Suppose on the other hand that ©€G. By Lemma 5.2,
X ! *x
Ix €1{0,1.7 s.t. Mx=A(%) and so A(gl ee 9y ) =A(7), hence
x x X X
1 k,-1 T 1 k., -1 (1)
. ) = ever .o ‘ . o
A((gy" «.. g ) TT) = (0, 0)" so (g 9, ) TEG

5.3 2-Group Membership Testing Given a Block Structure Tower

Let the Llozx-gtructure towcr of G be the sequence of subgroups

) (i)

1 .
G==G(O) DG( ) o o I where G is the subgroup of G containing

only permutations that fix all the nodes of depth < i in the structure
forest FG. Since the depth of FG is at most (log nJ, this tower has

depth i< {log njJ.
THEOREM 5.1. Suppose we have gererators for the rlock etructure touv:

(1) o

c=59 56 o...2 I of the Z2-grour Ges .

o(l)
n

. . . 3 .
in G wn o time O(log n) usthg procesgorea,

Proof. Suppose we are input some permutation T €sn. we first must deternine
. ) .k . .
the existence of a solution x€{0,1} of the linear equation Mx =A(")

defined in Lemma 5.2. If no solution exists, we reject -. Otherwise we usc

G(l).

this solution x to reduce the problem to membership testing in In

*1 M%,-1_

1
particular, by Lemma 5.3, we need only test if (gl ce 9y ) (1)

€G . This
is done by recursive application of the membership test. Since h< [log nj,

at most 1log n stages suffice. Each stage thus reguires solution of a linear
system over GF(2)[x] of size at most n xn, which can be done in time 0(log n)2

. o(1 . .
using n (1) by the parallel algorithm of [Borodin, van zer Gothen, and Hopcrcft,

et e e,
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.

82). Thus the total time is O0O{(log n)3 using nO(l) processors. a]

Remark. These time bounds can be decreased to O(log n)2 if the required
matrix inverses are precomputed, (so that each stage requires only matrix

multiplications, which takes only 0Of{log n) time using no(l) processors).

5.4 Polylog Time Construction of the Block-Structure Tower from a Randonm

Presentation

Let L={”l,...,7m } be a list of m_ permutations independently chosen
o)
from RAND(G). Fix m=mo/log n. Let Y be the linear space over GF(2)[x]

Y n

jenerated by A(",) ,...,A(?m). Since A(G) is a groun of size at most 2 52
1]

by Theorem 2.1 we have

»

LEMMA 5.4, Prob(Yy=a(G)) Z21=-¢ {7 m>r-(1n(r))1og(1/el),ukere

Note that since the total number of nodes of the structure fore

2n, we can bound the probability of error to be at most ¢ using

3
[}

2n + (ln(2n))log(l/5l) random elements of G. For example, if

. =n L, then it suffices to let m=2n+o(n).

1]

Let M' Dbe the r>m boolean matrix whose i-th column is A(’i) for

. ‘ 1 .
i=1,...,m. Then by construction Y={M'x$x€10,l}m}. Let Y( ),...,Y()

(i) (1) (1)

be a basis for Y., For 1i=1,...,., we find X such that M'x =Y
Xl(l) XH:J.) @
and define the permutation -:,l =7y ese "m .« Since A(Ti) =Y , we have

by construction Y =A( <rl,.. . ,v52> )
Now let M" be the r x{ boolean matrix whose i-th column is

R
A(~i) for i=1,...,%. Again by construction, ={M"z]z€{0,l} e

For purposes of membership testing, it suffices to have the list

CpreeseCy which generate the coset representatives of G/G(l).

Z Z
.. CQlel'.."zQ €{0,1}} <is a corplete set

. (
of coset representatives for G/G'l).

LEMMA 5.5, The set R::{Oll
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1
For each r“ESn, let fR(") =(01 e.e 0.7) 7= where M"z=A(").

Clearly, if TE&EG then fR(n) GG(l). Hence by Lemma 2.1 we have

LEMMA 5.6. £ (RAND(G)) = RaND (G 1))

Since I;=(Tl,...,vm ) is a list of independently chosen elements of RAND{(G),
o
and we have only utilized the first m elements of L to construct a random

presentation of G(l), it follows from Lemmas 2.2 and 5.6 that

(1) _ -
LEMMA 5.7. L' =(f (" .,

)) ~ Fae A e Yoy e T
: 7

(- L oot i
R m . i .
(o]

Yseonsf

. - 1
chogen elements oOf RAND(G( )).

The above Lerma implies that we can repeat the above construction, to construct

(2) o8

a random presentation of G from the first m elements of L A

further log n stages yields generators for the entire block-structure towcr

SR (O PR C I}

.o

as required, The linear algebraic computations

(such as computing basis vectors), required in each stage of the above

. 1 . . 2 . 0(1
construction of G( ), can be done in time 0Of{log n) using n (1) processors

by the methods of [Borodin, van zur Gothen, and Hopcroft, 82]. Since there are

at most log n stages, we have:

THEOREM 5.2. Given a random presentation of 2-grouyr GCSS , we can CONE .
1% v g + o

generators for each subgrowy of the block-gtructure tower, in

time O(log n)3 using 01 processors.

By Theorems 5.1 and 5.2, we have:

COROLLARY 5.1, Given a random presentation of (worst casc) 2-group Gggsg,

e s . P 3
and some xéisn we ean test memberchip in G in exycered time  O(log n)

0(1)
n

.
usinz
tH

processors.
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COROLLARY 5,2, Given random prescntations of (worse case) 2-group G

in cxpected time Of(log ny> using n° () processors.

c
1162 S5,

ve ean test G, €G

1 2

- a Al o 24

o

W :"J"
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